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Circuit Noise impairs sensitivity of Analog Detectors

ELECTRONICSLOADDETECTOR

Detector Signal

1 Photon 1 Electron

Detector Noise

(primary Dark-Current)

PDE

Circuit Noise

is DOMINANT !!
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ELECTRONICSLOADDETECTOR

Detector Signal

1 Photon        1 Electron

Detector Noise

(Primary Dark-Current)

PDE

Electronic Noise

Current

Booster

Process

Single-Photon Detectors bypass the Electronic Noise Limit 
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� Direct digital detection

� Overcomes the limit of analog photodetectors, i.e. circuit noise

� Noise only from the statistics of dark-counts and photons

� Measurement of light intensity with ultra-high sensitivity

and with precise photon-timing

Time-Correlated Single Photon Counting (TCSPC)

� measurement of ultrafast  waveforms with ultra-high sensitivity

Single Photon Counting
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SP detector

Time Correlated Single Photon Counting

MCA

Hystogram of many trials

≡≡≡≡

fluorescence decay curve

max 1 photon/ pulse

Fluorescent

Fluorescence
pulse

pulse

Electronic Stopwatch

ADC, classify 
and digital store

TAC

pulse
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Semiconductor detectors vs PMT - Photomultiplier Tubes

� microelectronic advantages

miniaturized, low voltage, etc.

� improved performance

higher Photon Detection Efficiency

better photon timing 

comparable or lower noise (dark counting rate)
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Silicon vs PMT: Photon Detection Efficiency
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3-step process

1. free electron generation

2. electron propagation through cathode

3. escape of electron into the vacuum

CONCLUSION

only a THIN layer at surface contributes by absorption to emission 

(few 10nm << optical absorption length)

���� intrinsic limitation to PDE 
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Silicon vs PMT : Dark Count Rate (DCR)

• PMT - active Ø 2.5 cm
cathode Dark Current < 1000 electron s-1   (at RT) 

density  <  200 el / cm2 s

• SPAD Single-Photon Avalanche Diode - active Ø 200 µm
primary Dark Current < 1000 electron s-1   (at RT) 

density  < 4 � 106 el / cm2 s

DCR density of SPADs is 2 � 104 higher than PMT

� limitation to the active area size
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Small detector size is OK in applications were light can be focused 

USERS CONSIDER THAT

→→→→ detector diameter  ~100 µm is OK for most applications

AND

→→→→ detector diameter  ~ 50 µm is acceptable though it requires tighter focusing 

and alignment and in some cases may achieve lower coupling efficiency
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Photon-Counting types are advantageous
vs analog detectors (CCDs, etc.) ?

• When the measurement time is very short (currently < 0.5 s). 

For instance: high frame-rate imaging, fluorescence correlation 

spectroscopy (FCS), fast optical pulses, etc. 

• Because of the electronic readout noise of analog detectors. 

For short measurement time with CCDs the readout noise is dominant 

over the dark-current noise and sets the sensitivity limit 

• In photon-counting detectors the readout noise simply does not exist
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• Bias voltage Va : slightly BELOW breakdown voltage VBD

• Linear-mode avalanche diode = detector with “AMPLIFIER inside”

• Gain with low mean value < 1000 and high statistical fluctuations

APD

Avalanche Photo-Diode APD

Va
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V = Vk - VaVB

Cd
a

a

dV
R

dI
=

k

a

Ia

DIODE EQUIVALENT CIRCUIT

Switch S models the avalanche triggering:

• with V ≤VB switch S is always open 

• with V >VB switch is closed by a photon detection

Ra  avalanche diode resistance

(from ≈100 Ω to some kΩ)

k B

a

a

V V
I
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−
=

AVALANCHE DIODE
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VB

Rd

+
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S

Ia

with S closed, avalanche current flows

Reverse bias I-V characteristics

VB Breakdown Voltage
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Avalanche Current Ia
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VS

Diode Terminal Voltage VkReal Circuit Equivalent Circuit
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• Bias voltage Va : ABOVE breakdown VBD (with excess bias Vexc ) 

no current in quiescent state 

Geiger mode operation

I

VVBD Va = VBD+Vexc

hν

“avalanche”

“quench”

“reset”

• Single photon switches on avalanche � macroscopic current

• Avalanche quenched by pulling V bias < VBD

• V bias reset to Va

• Triggered-mode avalanche: detector with “BISTABLE inside”
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• Bias: well ABOVE breakdown 

• Geiger-mode: it’s a BISTABLE !!

• Digital output

• Gain: meaningless !!

• Bias: slightly BELOW breakdown

• Linear-mode: it’s an AMPLIFIER

• Analogue output

• Gain: limited < 1000

Avalanche PhotoDiode Single-Photon Avalanche Diode

APD SPAD

Avalanche

ON

SPADs are different from APDs
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0 but suffers from

� long, not well defined deadtime 

� low max counting rate < 100kc/s

� photon timing spread

� et al

≈1 MΩ

≈ 50 Ω

Diode Terminal Voltage Vk

Avalanche Current Ia
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Active Quenching

by providing

� short, well-defined deadtime

� high counting rate > 1 Mc/s

� good photon timing 

� standard output

opened the way to SPAD applications

Output Pulses
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Active Quenching Evolution

Compact modules

in the 90’s

Earlier modules

in the 80’s

Integrated AQC

in early 2000’s

Today
Monolithic chips for

Single Photon
Counting and Timing



SPADLab presentation

sergio.cova@polimi.it 23Technical Readiness

Results of decades of research made widely available by 

Micro-Photon-Devices

a spin-off company of Politecnico di Milano 

www.micro-photon-devices.com

Via Stradivari 4, Bolzano, 39100 Italy

Established in 2004 - Profitable since year 2006 

96% of the production is exported to US, Europe and Asia
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Photon Detection Efficiency (PDE)

Probability of

Carrier Photogeneration

AND

Avalanche Triggering !!

hence

higher excess voltage Vexc above VBD

� higher electric field

� higher PDE
@ λ = 900 nm
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higher excess voltage Vexc above VBD

� higher electric field

� higher dark count

DCR rise is steeper than PDE
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Thermal generation via deep levels

(@ low field F < 105 V/cm)
Field-enhanced generation

• Thermal generation and tunneling of carriers in the depletion region

Deep 

level

Avoided by suitable

detector design !

BBT

TAT

� Deep levels (traps) mainly due to transition metal impurities

� Fe, Cu, Ti or Ni are usually found in silicon in concentrations of ~1011 - 1012cm−3

(unintentional contaminants)

Deep 

level
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• Poole-frenkel effect

� barrier height lowered

Coulombic wellDirac well

• Phonon-assisted tunneling

� barrier width 

decreased

TAT

PF
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Afterpulsing Effect

• Carriers trapped during 

avalanche

• Carriers released later trigger the  

avalanche

Characterization of afterpulsing

• 100 µm detector

• 80ns deadtime

• Time Correlated Carrier Counting  

(TCCC) method

• Afterpulsing negligible after 1 µs

• Total afterpulsing probability:

< 1% @ RT

tunnel
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with delayed quench

with prompt quench
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Carrier Trapping and Delayed Release
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Microelectronic Technology 

� Strict control of transition metal contamination

- ultra-clean fabrication process (defect concentration < 109 cm-3 ) 

- suitable gettering processes compatible with device structure

Device design

� Electric field engineering 

avoids BB tunneling and reduces field-enhanced generation, with impact on:

� dark count rate

� dark count decrease with temperature

� photon detection efficiency

� photon timing jitter

Timing electronics

� Low-level sensing of the avalanche current ���� avoids or reduces trade-off 

between timing jitter and active area diameter
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• 1975       Invention of the Active Quenching Circuit (AQC)

• 1980-82  Picosecond photon timing with planar SPADs 

• 1987        Epitaxial silicon SPADs for improved timing

• 1992-95   Single-photon technique extension to IR range 

with Germanium and InGaAs/InP devices

• 1995 First monolithic integrated AQC 

• 1990-96   Gaining insight in the physical processes 

that control the SPAD performance 

• 2004       Wide area SPADs (diameter up to 200 µm) 

with excellent timing performance

• 2005 SPAD array detectors in monolithic chip

• 2008 Resonant-Cavity-Enhanced SPADs 
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simple planar SPAD structure 

with deep diffused guard ring 

on bulk p-substrate (no epitaxy)
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→ Bottom epi-layer thickess can be adjusted 

for achieving shorter diffusion tail
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Photon-timing jitter: main peak width

is set by fluctuations in:

Avalanche local build-up 

strongly dependent on field intensity F

Avalanche transverse propagation

� by multiplication-assisted diffusion

� by photon-assisted propagation
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current pick-up circuit 

sensing the avalanche current 

at very low level (< 100 µA)

S.Cova, M.Ghioni, F.Zappa, US Pat. N. 6,384,663 B2, 2002 

Avalanche current leading edge

threshold

picosecond timing jitter is achieved 

also with wide detectors

35ps FWHM checked for 200 µm device at room temperature
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Planar SPADs with high F: timing jitter
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Microelectronic Technology 

� Strict control of transition metal contamination

- ultra-clean fabrication process (defect concentration < 109 cm-3 ) 

- suitable gettering processes compatible with device structure

Device design

� Electric field engineering 

avoids BB tunneling and reduces field-enhanced generation, with impact on:

� dark count rate

� dark count decrease with temperature

� photon detection efficiency

� photon timing jitter

Timing electronics

� Low-level sensing of the avalanche current ���� avoids or reduces trade-off 

between timing jitter and active area diameter
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some limitations are met

• p+n junction � hole-initiated avalanche � lower PDE

• Guard ring necessary

• no flexibility, device designers cannot modify the process

• technology evolution driven by circuit requirements (not by detectors!)

good SPADs can nowadays be produced by 

industrial High-Voltage CMOS technologies

but it becomes possible 

to integrate SPADs with circuit systems !!
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� Photon Counting in

� Adaptive Optics in astronomy

� Parallel Fluorescence Correlation Spectroscopy

� Multiphoton Multifocal Microscopy

� Chemiluminescent assay analysis

� Photon Timing in

� Spectrally-resolved Fluorescence Lifetime Imaging (SFLIM)

Basic requests ���� - increase throughput

- miniaturization and lower system-cost

Two approaches in applications

- Dense arrays:  high pixel number and/or smart pixels for

� High frame-rate, low-level imaging 

� 3D imaging 

- High performance arrays: low pixel number (< 100) and hi-Q pixels for
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Two approaches in detector technology

� Dense arrays � standard CMOS technology

- small pixel diameter (< 50µm, due to higher dark count rate)

- large number of pixels

- smart pixels (with in-pixel electronics !!)

� High-Quality-pixel arrays � Custom technology

- large diameter of pixel (> 100µm)

- low or moderate number of pixels (< 100 pixel)

- limitations due to off-chip electronics 

SPAD arrays
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• Smart-pixel

�SPAD + AQC + counting electronics + register

• Fully parallel operation

�1024 pixel Single-Photon Imager

High frame rate single photon imaging 

�can also act as a “Single pixel” large area detector

Low dead time, high count rate and photon number resolution

• Up to 100kframe/s for a 32x32 array

• No dead time between frames

SPAD Arrays in HV-CMOS technology

3.4mm

3
.4

m
m
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6x8 pixels, 240 µm pitch

Matrix detector for analysis of protein microarray (allergy diagnostics)

50 µm pixel diameter
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Optical Crosstalk in Arrays

•An impinging photon triggers a primary avalanche in a pixel (A)

•Secondary photons are emitted by the hot electrons of the avalanche current

•These photons propagate through the bulk silicon and can trigger 

a secondary avalanche in another pixel (B)
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PDE Photon Detection Efficiency 
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Silicon absorbs up to λ = 1.1µm

Smaller bandgap required for working at longer λ

Mandatory:

• Deep cooling (< 220 K)

for limiting thermal carrier generation

&

• Limitation to electric field

for avoiding tunnel-assisted generation
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In0.53Ga0.47As  works up to λ ~ 1.7µm because  Eg ~ 0.75 eV

but

it must be cooled 

it is unsuitable for avalanche

Separate Absorption and Multiplication (SAM) 

heterostructure device 
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In0.53Ga0.47As absorption layer � Eg ~ 0.75 eV � Cut-off 1.7µm 
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VBD

VEX

VUV

TON TOFF

BREAKDOWN

GND

EXCESS BIAS

A
v
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no avalanche!
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Carrier Trapping and Delayed Release
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• < 10 ns avalanche duration

• Lower charge � lower afterpulsing

• Longer gate duration with low afterpulsing
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with delayed quench

with prompt quench

Carrier Trapping and Delayed Release
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VLT Very Large Telescope (Chile) 

Four quadrant SPAD detector
for Adaptive Optics

Peltier

Spacer Ceramic

Centering Ceramic

2x2 lenslet array

www.eso.org

pixel diameter up to 100µm

STRAP system for Tip tilt correction
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63

Example of AO correction:

image taken by the MMT telescope

La distanza angolare tra gli
oggetti è paragonabile a quella
di una moneta da 2 EURO
vista da Milano a Bergamo

AO OFF

AO OFF AO ON

AO ON
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Quantum Key Distribution (QKD) principle
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• Conformational dynamics of biomolecules is crucial to their biological functions

• Electron transfer used as a probe for angstrom-scale structural changes

• Measure fluorescence lifetimes down to < 100ps to gauge conformational dynamics

H. Yang, G. Luo, P. Karnchanaphanurach, T.M. Louie, I. Rech, S.Cova, L. Xun, X. Sunney Xie, 

Science vol.302, 262-266 (2003)

Fre-FAD complex
(Flavin reductase - Flavin Adenine Dinucleotide) 
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at Harvard University the principle was proposed:

probing on nanometer scale the protein dynamics (Fre–FAD complex) 

by laser excitation and correlation analysis of fluctuations in real time 

of the fluorescent photon picosecond delay

H. Yang G.Luo, P.Karnchanaphanurach, T.M.Louie, I.Rech, S.Cova, L.Xun, X.S.Xie, 

“Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer”

Science, vol.302, 262-266 (2003)   - Citations: 217 at May 2009, IF 29.8 

at Politecnico di Milano the essential tool was developed:

the Picosecond-Timing Single-Photon Detector
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DNA analysis by Capillary Electrophoresis (CE)

DNA Fragment separation

Electropherogram

Time (min)
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Reduction of analysis time and cost by: 

� integrated series of steps

� small quantities analyzed

� reduced reagent consumption 

���� high sensitivity required
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• Reducing analysis time and cost in genetic tests: 

small samples, low reagent consumption, 

integrated series of analytical steps, rapid analysis

Sensitivity limit: 1pM

that is

< 30 molecules in 50pL
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6x8 pixels, 240 µm pitch

Matrix detector for analysis of protein microarray (allergy diagnostics)

50 µm pixel diameter
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FCS applications

• Measurement of absolute concentrations at well-defined positions

• Transport/diffusion 

• Binding studies:  reaction kinetics, equilibrium constants

• Aggregation

• X..

FCS read out parameter

• Mean Number of Molecules => Concentration

• Diffusion times => Molecule size, Viscosity

• Fraction of components => Bound/free ratio

=> Kinetic parameters of or chemical reactions

• Triplet and other dark states => Inherent properties of molecules

=> Environmental parameters (pH, X)

Required SPAD performance

• Low afterpulsing 

• High count rate � Short dead-time 

detector afterpulsing
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Single molecule bursts

Cy3B-DNA sample (Exc@ 532 nm) 

Collab. POLIMI - UCLA Chem&Biochem. Dept.

X. Michalet, R. A. Colyer, G. Scalia, T. Kim, M. Levi, D. B. Aharoni, A.M. Cheng, 

K.Arisaka, J. E. Millaud,  I. Rech, S. Marangoni, M. Ghioni, S. Cova, S. Weiss 

“High-throughput single-molecule fluorescence 

spectroscopy using parallel detection “

Photonics West, San Francisco, January 2010 
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Fluorescence lifetime

kr, knr : radiative and non-radiative

transition rates

Deactivation of an electronically excited 

molecule: the molecule relaxes from the 

lowest vibrational energy level of the excited 

state to a vibrational energy level of the 

ground state.

Fluorescence lifetime: average time a molecule spends in the excited state S1 before 

returning to ground state So (sub-nanoseconds to a few nanoseconds). 

Jablonski diagram
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• Lifetimes are minimally affected by the variation of excitation 

intensity or other factors that affect the fluorescence intensity.

� sources of light loss (endogenous absorbers, photobleaching, 

optical misalignments), fluorophores concentration, excitation 

collection geometry.

• Lifetimes can provide effective means of discrimination among 

fluorophores.

� fluorophores with overlapping emission spectra but with different     

fluorescence decay times can be discriminated.

• Lifetimes are sensitive to important parameters of the biological 

microenvironment:

� pH, ion concentration (e.g. Ca2+, Mg2+, Na+),O2 concentration, 

binding, enzymatic activity, temperature.

Why fluorescence lifetime spectroscopy ?



SPADLab presentation

sergio.cova@polimi.it 75Fluorescence Lifetime Imaging (FLIM)

Courtesy of Picoquant GmbH, Germany

FLIM image of the autofluorescence of daisy pollen grains

• 64 µm x 64 µm area (256 pixels/axis)

• 0.6 ms/pixel acquisition time → 2 min total measurement time
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• Photon Counting: how and why 

• Vacuum tube and silicon detectors

• Single-Photon Avalanche Diodes SPAD

• Challenges for SPAD development: technology and design

• SPAD for the InfraRed spectral range 

• SPAD applications

• SPADLab
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SPADLab

6 permanent staff

3 research associates

> 10 PhD students

stream of students in graduation thesis (“Tesi di Laurea”)
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COVA, S. Emeritus Professor

GHIONI, M. Full Professor 

ZAPPA, F. Full Professor

RECH, I. Assistant Professor

TOSI, A. Assistant Professor

GULINATTI, A. Assistant Professor

SPADlab Staff
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SPADlab people
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Permanent Staff:    49

Short Term Staff:     5

Associated Researchers:  30

� Class 100 clean area (250 square meters)

� Pilot line for fabrication of devices and IC’s in 4” silicon wafer

• Technological processes with high flexibility

• Consolidated know-how in Si device technology

• Si-micromachining and Si anodization
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Technical Staff 2013

PDM Photon Detector Modules

Window input
PDF Photon Detector Modules

Fibre input

www.micro-photon-devices.com

Results of decades of research now available:

Micro-Photon-Devices
since 2005 a spin-off company of Politecnico di Milano

BIASI R. PhD, (CEO)

GIUDICE A. PhD  (CTO)

TISA S. PhD 

MAGNI, L  (CCO)

SIMMERLE, G.

PICCIN, F.

PDC Photon Detector Carrier

Window input


