

Single Photon Avalanche Diode Laboratory SPADLab

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- SPADLab

POLITECNICO DI MILANO

Circuit Noise impairs sensitivity of Analog Detectors

SPADLab presentation

POLITECNICO DI MILANO

Single-Photon Detectors bypass the Electronic Noise Limit

Single Photon Counting

- Direct digital detection
- Overcomes the limit of analog photodetectors, i.e. circuit noise
- Noise only from the statistics of dark-counts and photons
- Measurement of light intensity with ultra-high sensitivity

and with precise photon-timing

Time-Correlated Single Photon Counting (TCSPC)

 \rightarrow measurement of ultrafast waveforms with ultra-high sensitivity

Time Correlated Single Photon Counting

sergio.cova@polimi.it 6

Single Photon Counting and Timing

Semiconductor detectors vs PMT - Photomultiplier Tubes

microelectronic advantages

miniaturized, low voltage, etc.

improved performance

higher Photon Detection Efficiency

better photon timing

comparable or lower noise (dark counting rate)

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- SPADLab

Silicon vs PMT: Photon Detection Efficiency

Emission in vacuum from PMT photocathode

3-step process

- 1. free electron generation
- 2. electron propagation through cathode
- 3. escape of electron into the vacuum

CONCLUSION

only a **THIN** layer at surface contributes by absorption to emission (few 10nm << optical absorption length)

→ intrinsic limitation to PDE

Silicon vs PMT : Dark Count Rate (DCR)

 PMT - active Ø 2.5 cm cathode Dark Current < 1000 electron s⁻¹ (at RT)

density < 200 el / cm² s

 SPAD Single-Photon Avalanche Diode - active Ø 200 μm primary Dark Current < 1000 electron s⁻¹ (at RT)

density $< 4 \cdot 10^6 \text{ el} / \text{cm}^2 \text{ s}$

- DCR density of SPADs is 2 · 10⁴ higher than PMT
 - → limitation to the **active area size**

Small detector size is OK in applications were light can be focused

USERS CONSIDER THAT

\rightarrow detector diameter ~100 μ m is OK for most applications

AND

 \rightarrow detector diameter ~ 50 µm is acceptable though it requires tighter focusing and alignment and in some cases may achieve lower coupling efficiency

Semiconductor detectors: when and why sergio.cova@polimi.it 13 Photon-Counting types are advantageous vs analog detectors (CCDs, etc.) ?

- When the measurement time is very short (currently < 0.5 s).
 For instance: high frame-rate imaging, fluorescence correlation spectroscopy (FCS), fast optical pulses, etc.
- Because of the electronic readout noise of analog detectors.
 For short measurement time with CCDs the readout noise is dominant over the dark-current noise and sets the sensitivity limit
- In photon-counting detectors the readout noise simply **does not exist**

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- SPADLab

Avalanche Photo-Diode APD

- Bias voltage V_a : slightly **BELOW** breakdown voltage V_{BD}
- Linear-mode avalanche diode = detector with "AMPLIFIER inside"
- Gain with *low mean value* < 1000 and *high statistical fluctuations*

DIODE EQUIVALENT CIRCUIT

Switch S models the avalanche triggering:

- with $V \leq V_B$ switch S is always open
- with $V > V_B$ switch is closed by a photon detection

with S closed, avalanche current flows

Passive Quenching Circuit

Geiger mode operation

- Bias voltage V_a: ABOVE breakdown V_{BD} (with excess bias V_{exc}) no current in quiescent state
- Single photon switches on avalanche \rightarrow macroscopic current
- Triggered-mode avalanche: detector with "BISTABLE inside"
- Avalanche quenched by pulling V bias < V_{BD}
- V bias reset to V_a

SPADs are different from APDs

Avalanche PhotoDiode

- Bias: slightly **BELOW** breakdown
- Linear-mode: it's an AMPLIFIER
- Analogue output
- Gain: *limited* < 1000

Single-Photon Avalanche Diode

- Bias: well **ABOVE** breakdown
- Geiger-mode: it's a **BISTABLE !!**
- **Digital** output
- Gain: meaningless !!

Passive quenching is simple...

POLITECNICO DI MILANO

... but suffers from

long, not well defined deadtime
 photon timing spread
 low max counting rate < 100kc/s
 et al

Active Quenching

by providing

- short, well-defined deadtime
- high counting rate > 1 Mc/s
- good photon timing
- standard output

opened the way to SPAD applications

sergio.cova@polimi.it

21

Output Pulses

Active Quenching Evolution

Earlier modules in the 80's

Compact modules in the 90's

Integrated AQC in early 2000's

Today Monolithic chips for Single Photon Counting and Timing

Technical Readiness

sergio.cova@polimi.it 23

Results of decades of research made widely available by

Micro-Photon-Devices

a spin-off company of Politecnico di Milano

www.micro-photon-devices.com Via Stradivari 4, Bolzano, 39100 Italy

Established in 2004 - Profitable since year 2006 96% of the production is exported to US, Europe and Asia

MPD

SPADLab presentation

Photon Detection Efficiency (PDE)

SPADLab presentation

Dark Count Rate (DCR)

higher excess voltage V_{exc} above V_{BD}

sergio.cova@polimi.it

25

- → higher electric field
- \rightarrow higher dark count

DCR rise is steeper than PDE

Dark Count Rate

POLITECNICO DI MILANO

• Thermal generation and tunneling of carriers in the depletion region

Thermal generation via deep levels (@ low field F < 10⁵ V/cm)

Field-enhanced generation

- Deep levels (traps) mainly due to transition metal impurities
- Fe, Cu, Ti or Ni are usually found in silicon in concentrations of ~10¹¹ 10¹²cm⁻³ (unintentional contaminants)

Field-enhanced generation

Dirac well

Coulombic well

- Phonon-assisted tunneling
 - barrier width

decreased

- Poole-frenkel effect
 - barrier height lowered

Electric field engineering

Electric field engineered to avoid band-to band tunneling

- Field-enhanced generation less intense
- DCR strongly reduces with temperature

Afterpulsing

Afterpulsing Effect

- Carriers trapped during avalanche
- Carriers released later trigger the avalanche

Characterization of afterpulsing

- 100 µm detector
- 80ns deadtime
- Time Correlated Carrier Counting (TCCC) method
- Afterpulsing negligible after 1 µs
- Total afterpulsing probability:
 - < 1% @ RT

SPADLab presentation

Afterpulsing effect build-up

Effect of temperature on the afterpulsing

SPADLab presentation

Challenges in SPAD development

Microelectronic Technology

- Strict control of transition metal contamination
 - ultra-clean fabrication process (defect concentration < 10⁹ cm⁻³)
 - suitable gettering processes **compatible** with device structure

Device design

Electric field engineering

avoids BB tunneling and reduces field-enhanced generation, with impact on:

- → dark count rate
- \rightarrow dark count decrease with temperature
- \rightarrow photon detection efficiency
- \rightarrow photon timing jitter

Timing electronics

➤ Low-level sensing of the avalanche current → avoids or reduces trade-off

between timing jitter and active area diameter

Milestones in SPAD development at Polimi sergio.cova@polimi.it 33

- 1975 Invention of the Active Quenching Circuit (AQC)
- 1980-82 Picosecond photon timing with planar SPADs
- 1987 Epitaxial silicon SPADs for improved timing
- 1992-95 Single-photon technique extension to IR range with Germanium and InGaAs/InP devices
- 1995 First monolithic integrated AQC
- 1990-96 Gaining insight in the physical processes that control the SPAD performance
- 2004 Wide area SPADs (diameter up to 200 μm) with excellent timing performance
- 2005 SPAD array detectors in monolithic chip
- 2008 Resonant-Cavity-Enhanced SPADs

Photon Timing jitter: diffusion tail

p-p⁺-n Double-Epitaxial SPAD structure

- Short diffusion tail with clean exponential shape
- Active area defined by p+ implantation
- No guard-ring (uniform QE)
- Adjustable V_{BD} and E-field
- SUITABLE for array fabrication

neutral p layer thickness w tail lifetime $\tau = w^2 / \pi^2 D_n$

A.Lacaita, M.Ghioni, S.Cova, Electron.Lett. 25, 841 (1989)

POLITECNICO DI MILANO

SPADLab presentation

Custom SPAD technology

→ Bottom epi-layer thickess can be adjusted for achieving shorter diffusion tail

Photon-timing jitter: main peak width

is set by **fluctuations** in:

Large area SPADs: timing jitter

38 sergio.cova@polimi.it

also with wide detectors

35ps FWHM checked for 200 µm device at room temperature

Planar SPADs with high F: timing jitter

Challenges in SPAD development

Microelectronic Technology

- Strict control of transition metal contamination
 - ultra-clean fabrication process (defect concentration < 10⁹ cm⁻³)
 - suitable gettering processes **compatible** with device structure

Device design

Electric field engineering

avoids BB tunneling and reduces field-enhanced generation, with impact on:

- \rightarrow dark count rate
- \rightarrow dark count decrease with temperature
- \rightarrow photon detection efficiency
- \rightarrow photon timing jitter

Timing electronics

➤ Low-level sensing of the avalanche current → avoids or reduces trade-off

between timing jitter and active area diameter

good SPADs can nowadays be produced by industrial High-Voltage CMOS technologies

some limitations are met

- p^+n junction \rightarrow hole-initiated avalanche \rightarrow lower PDE
- Guard ring necessary
- no flexibility, device designers cannot modify the process
- technology evolution driven by circuit requirements (not by detectors!)

but it becomes possible to integrate SPADs with circuit systems !!

SPAD arrays

Two approaches in applications

- Dense arrays: high pixel number and/or smart pixels for
 - High frame-rate, low-level imaging
 - ➤ 3D imaging
- High performance arrays: low pixel number (< 100) and hi-Q pixels for
 - Photon Counting in
 - Adaptive Optics in astronomy
 - Parallel Fluorescence Correlation Spectroscopy
 - Multiphoton Multifocal Microscopy
 - Chemiluminescent assay analysis
 - Photon Timing in
 - Spectrally-resolved Fluorescence Lifetime Imaging (SFLIM)

Basic requests → - increase throughput

- miniaturization and lower system-cost

Two approaches in detector technology

Dense arrays

SPAD arrays

- small pixel diameter
- large number of pixels
- smart pixels

→ standard CMOS technology

(< 50µm, due to higher dark count rate)

(with in-pixel electronics !!)

- **High-Quality-pixel** arrays → **Custom** technology
 - large diameter of pixel
 - low or moderate number of pixels
 - limitations due to off-chip electronics
- (< 100 pixel)

(> 100µm)

SPAD Arrays in HV-CMOS technology

• Smart-pixel

 \checkmark SPAD + AQC + counting electronics + register

- Fully parallel operation
 - ✓1024 pixel Single-Photon Imager

High frame rate single photon imaging

✓ can also act as a "Single pixel" large area detector

Low dead time, high count rate and photon number resolution

- Up to 100kframe/s for a 32x32 array
- No dead time between frames

3.4mm

SPAD arrays in custom technology

50 µm pixel diameter

sergio.cova@polimi.it

45

6x8 pixels, 240 µm pitch

Optical Crosstalk in Arrays

- •An impinging **photon triggers a primary avalanche** in a pixel (A)
- •Secondary photons are emitted by the hot electrons of the avalanche current
- •These photons propagate through the bulk silicon and can **trigger a secondary avalanche** in another pixel (B)

PDE Photon Detection Efficiency

Photon Detection Efficiency

Photon Timing

SPADLab presentation

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- Working in SPADLab

Single Photon Detectors: PDE

SPADLab presentation

POLITECNICO DI MILANO

DN

Photon Detection Efficiency: long λ detectors

 $In_{0.53}Ga_{0.47}As$ works up to $\lambda \sim 1.7 \mu m$ because $E_g \sim 0.75 \text{ eV}$

but

it must be cooled it is unsuitable for avalanche

Separate Absorption and Multiplication (SAM) heterostructure device

Gated-mode operation

SPADLab presentation

Gated Active Quenching (AQC)

SPADLab presentation

SPADLab presentation

Afterpulsing

Feedthrough - Compensated signal pick-up

by feed-through in the diode capacitance, the rising and falling-edge of the gate signal inject disturbing spikes in the timing electronics Remedy:

accurate capacitive compensation

SPADLab presentation

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- Working in SPADLab

www.eso.org

VLT Very Large Telescope (Chile)

Four quadrant SPAD detector for Adaptive Optics

STRAP system for Tip tilt correction

pixel diameter up to 100µm

MPD

Quadrant

Example of AO correction: sere image taken by the MMT telescope

Quantum Key Distribution (QKD) principle

Single molecule spectroscopy

sergio.cova@polimi.it 65

Time

Fre-FAD complex (Flavin reductase - Flavin Adenine Dinucleotide)

- Conformational dynamics of biomolecules is crucial to their biological functions
- Electron transfer used as a probe for angstrom-scale structural changes
- Measure fluorescence lifetimes down to < 100ps to gauge conformational dynamics

H. Yang, G. Luo, P. Karnchanaphanurach, T.M. Louie, I. Rech, S.Cova, L. Xun, X. Sunney Xie, Science vol.302, 262-266 (2003)

POLITECNICO DI MILANO

SPADLab presentation

Single Molecule Conformational Dynamics

at Harvard University the principle was proposed: probing on nanometer scale the protein dynamics (Fre–FAD complex) by laser excitation and *correlation* analysis of *fluctuations in real time* of the fluorescent photon picosecond delay

at **Politecnico di Milano the essential tool** was developed:

the Picosecond-Timing Single-Photon Detector

H. Yang G.Luo, P.Karnchanaphanurach, T.M.Louie, I.Rech, S.Cova, L.Xun, X.S.Xie, "Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer" Science, vol.302, 262-266 (2003) - Citations: 217 at May 2009, IF 29.8

Lifetim

Time

DNA analysis by Capillary Electrophoresis (CE)

DNA fragment separation in microchip

 Reducing analysis time and cost in genetic tests: small samples, low reagent consumption, integrated series of analytical steps, rapid analysis

SPAD arrays in custom technology

Matrix detector for analysis of protein microarray (allergy diagnostics)

50 µm pixel diameter

6x8 pixels, 240 µm pitch

Fluorescence Correlation Spectroscopy (FCS)

- Principle: Excited molecules in the focal volume give rise to a fluorescent signal
- The fluorescence signal fluctuates in time \rightarrow F(t)
- Fluctuations quantified by calculating the normalized autocorrelation function $G(\tau)$

Fluorescence Correlation Spectroscopy (FCS)

FCS read out parameter

- Mean Number of Molecules => Concentration
- Diffusion times

٠

- => Molecule size, Viscosity
- Fraction of components
- => Bound/free ratio
 - => Kinetic parameters of or chemical reactions
- Triplet and other dark states
 - s => Inherent properties of molecules
 - => Environmental parameters (pH, ...)

FCS applications

- · Measurement of absolute concentrations at well-defined positions
- Transport/diffusion
- Binding studies: reaction kinetics, equilibrium constants
- Aggregation

•

Required SPAD performance

- Low afterpulsing
- High count rate → Short dead-time

SPADLab presentation
POLITECNICO DI MILANO

Fluorescence lifetime

Jablonski diagram

Fluorescence lifetime: average time a molecule spends in the excited state S_1 before returning to ground state S_o (sub-nanoseconds to a few nanoseconds).

Why fluorescence lifetime spectroscopy ? sergio.cova@polimi.it 74

- Lifetimes are minimally affected by the variation of excitation intensity or other factors that affect the fluorescence intensity.
 - sources of light loss (endogenous absorbers, photobleaching, optical misalignments), fluorophores concentration, excitation collection geometry.
- Lifetimes can provide effective means of discrimination among fluorophores.
 - Iluorophores with overlapping emission spectra but with different fluorescence decay times can be discriminated.
- Lifetimes are sensitive to important parameters of the biological microenvironment:

PH, ion concentration (e.g. Ca²⁺, Mg²⁺, Na⁺),O₂ concentration, binding, enzymatic activity, temperature.

Fluorescence Lifetime Imaging (FLIM)

FLIM image of the autofluorescence of daisy pollen grains

- 64 µm x 64 µm area (256 pixels/axis)
- + 0.6 ms/pixel acquisition time \rightarrow 2 min total measurement time

Courtesy of Picoquant GmbH, Germany

SPADLab presentation

POLITECNICO DI MILANO

Outline

- Photon Counting: how and why
- Vacuum tube and silicon detectors
- Single-Photon Avalanche Diodes SPAD
- Challenges for SPAD development: technology and design
- SPAD for the InfraRed spectral range
- SPAD applications
- SPADLab

SPADLab

6 permanent staff

3 research associates

> 10 PhD students

stream of students in graduation thesis ("Tesi di Laurea")

SPADIab Staff

COVA, S.	Emeritus Professor
GHIONI, M.	Full Professor
ZAPPA, F.	Full Professor
RECH, I.	Assistant Professor
TOSI, A.	Assistant Professor
GULINATTI, A.	Assistant Professor

sergio.cova@polimi.it

78

POLITECNICO DI MILANO

SPADIab people

CNR-IMM Bologna Silicon Foundry

P

- Class 100 clean area (250 square meters)
- Pilot line for fabrication of devices and IC's in 4" silicon wafer
 - Technological processes with high flexibility
 - Consolidated know-how in Si device technology
 - Si-micromachining and Si anodization

Associated Researchers: 30

Results of decades of research now available:

Micro-Photon-Devices

since 2005 a spin-off company of Politecnico di Milano

Technical Staff 2013

BIASI R. PhD, (CEO) GIUDICE A. PhD (CTO) TISA S. PhD MAGNI, L (CCO) SIMMERLE, G. PICCIN, F.

www.micro-photon-devices.com

